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Introduction to Drones/ UAVs & UAS

Drones or Unmanned Aerial Vehicles

Drones, also known as unmanned aerial vehicles (UAVs), are aircraft systems that
operate without an onboard human pilot and are instead controlled remotely or
programmed for autonomous flight. A drone is essentially an aircraft equipped with
sensors, cameras, navigation systems, and sometimes cargo space, designed to fly

without direct human presence onboard.

UAV
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Gliders
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Classification based on weight:

e Nano: <250 gm
e Micro: 250 gm to 2kg
e Small: 2to 25 kg

e Medium: 25to 150 kg

e Large: >150 kg

Classification based on Design:

e Fixed Wing
e Multi-Rotor

e Hybrid Vertical Take-off and Landing (VTOL)




Unmanned Aircraft Systems

They are part of a larger system known as an unmanned aircraft system (UAS), which
includes the drone itself, its control station, and the communication link between them.
UAVs can be piloted remotely by operators or programmed with artificial intelligence to
perform autonomous missions.



Where do Drones/ UAVs find application?

Industrial and Infrastructure Applications

UAVs are widely utilized for inspecting infrastructure such as power lines, wind turbines,
solar farms, bridges, and dams, providing aerial intelligence that enhances safety and
reduces inspection time. In construction, drones support project monitoring, mapping,
and surveying, helping ensure quality control and progressive reporting for
stakeholders.

Remote Asset Maintenance e.g. cross country oil and gas pipelines, solar farms in
deserts, hydroelectric dams etc,

Agriculture and Environmental Monitoring

UAVs enable precision agriculture by assisting with crop health assessment, irrigation
management, spraying fertilizers and pesticides, and yield estimation. They play crucial
roles in environmental monitoring, including forest health analysis, wildfire detection,
pollution monitoring, and mapping deforestation.

Agriculture

- Seed dispersal over large acreage
- Measured watering, seed development and growth
- Pesticide spraying over large acreage

Disaster Management and Search & Rescue

Drones are indispensable for disaster management, where they can access dangerous
areas to aid in rapid damage assessment, victim location, and delivery of essential
supplies and medical kits during natural or man-made catastrophes. UAVs greatly
improve the speed and effectiveness of search and rescue missions by providing real-
time aerial imagery and supporting teams working in difficult or hazardous terrain.

Fire-fighting

- Discharge of water over hard-to-access fires (e.g. skyscrapers, wildfires)

Security, Surveillance, and Law Enforcement

The use of drones for surveillance includes monitoring large areas for security
purposes, patrolling roads, antipiracy efforts, livestock monitoring, and crowd control.
Law enforcement agencies employ drones for crime detection, evidence gathering, and
traffic management, reducing risks for personnel while improving oversight capabilities.



Military

- Surveillance

- Reconnaissance

- Logistics —transport of goods to remote areas
- Loiter Munitions (LM)

- Direction of Own Artillery Fire (DOOAF)

Logistics, Delivery, and Healthcare

UAVs revolutionize logistics by transporting supplies, packages, medical kits, and even
emergency vaccines to remote or inaccessible locations. Companies like Amazon have
piloted drone-based delivery systems, while healthcare providers use drones for
delivering medicines or reaching remote patients rapidly in crisis situations.

Surveying, Mapping, and Research

In scientific research and geospatial surveying, drones provide efficient aerial
photography, create high-resolution maps and models, and support LiDAR or
photogrammetry for topographical analysis. This expedites area coverage for urban
planning, mining exploration, and conservation activities.

Geo-location

- Analysis and classification of traffic, based on which decisions (e.g.) on where to
establish a petrol pump can be taken

Insurance and Waste Management

Insurance companies deploy drones for damage assessment and claims verification,
making post-disaster inspections faster and more reliable. In waste management,
drones help identify illegal dumping sites and monitor landfill operations.



Introduction to Workings of UAVs and UAS

What are the key components of Unmanned Aerial Vehicles (UAVs)?

Unmanned Aerial Vehicles (UAVs) operate through a blend of mechanical, electronic,
and software systems that enable autonomous or remote flight, navigation, and task
execution.
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Core Components

e Frame (Chassis): Serves as the backbone, holding all elements together. Usually
made from lightweight materials like carbon fiber or aluminum, the frame’s
design directly affects aerodynamic efficiency and durability.

e Motors & Propellers: Motors (often brushless for efficiency) spin propellers,
generating lift and thrust. The number, arrangement, and size of these affect
stability, speed, and maneuverability.

e Electronic Speed Controllers (ESCs): ESCs regulate the power supplied to the
motors based on signals from the flight controller, enabling controlled
acceleration, deceleration, and precise maneuvers.

e Power System (Battery): UAVs primarily use rechargeable lithium-polymer (LiPo)
batteries to supply power to all electronic and propulsion components.

Flight Control and Stability



Flight Controller (FC): The “brain” of the UAV, the flight controller processes data
from sensors and the pilot's inputs. It adjusts motor power and direction,
maintaining balance and executing flight commands.

Sensors:

Gyroscopes and Accelerometers: Detect orientation and motion.
Magnetometers and GPS: For directional alighment and positioning.
Barometers: Measure altitude.

Other sensors: May include cameras, LiDAR, ultrasonic sensors, depending on
the use-case.

Remote Control or Autopilot

UAVs are either manually controlled through a ground station or autonomously
run pre-programmed flight plans using GPS and onboard computing.

Communication and Navigation

Radio Transmitter & Receiver: UAVs communicate with ground stations or
remote controls using radio waves, typically in 2.4 GHz or 5.8 GHz frequency
ranges, allowing for real-time command transmission and telemetry.

Telemetry Systems: Provide live feedback, such as battery status, flight location,
camera feed, and sensor data to the operator.

Additional Systems and Payloads

Camera Systems/Gimbals: For aerial imaging, surveillance, or videography,
stabilized with gimbals for smooth movement.

Landing Gear: Protects the UAV and payload during takeoff and landing.
Payload: Depending on application, may include delivery packages, agricultural
systems, sensors, or scientific equipment.

How do UAVs Fly?

Bernoulli’s Principle

Kinetic Energy, Potential Energy and Pressure Energy is constant, for a moving fluid

Sum of All Energies for a given volume of fluid is constant.

(Kinetic + Potential + Pressure Energy) per unit volume = Contant

(Y2Mv”2 + Mgh + PV)/V = Constant

Mv*2/ 2V + Mgh/V + P = Contant

RhoXv”*2/2 + RhoXgXh + P = Constant



By implication, for a fluid at constant height, Pressure is inversely proportional to
velocity.

Let us consider an Aerofoil to illustrate this concept:

There are four forces working on an Aerofoil.

Lift

Weight

Considering Bernoulli’s equation:

1/2XRho Xv1*2+RhoXgXh1+P1=1/2XRho X212 +RhoXgXh2+P2
(At constant height h, as speed v increases, Pressure P decreases and vice versa)

Bernoulli’s principle is fundamental in managing the four main forces—Ilift, thrust, drag,
and weight—in Unmanned Aerial Vehicles (UAVs). By understanding how air pressure
varies with velocity around airfoils and moving UAV components, engineers can
optimize flight performance, stability, and efficiency.

Bernoulli’s Principle Explained

Bernoulli’s principle states that an increase in the speed of a fluid (such as air) results in
a simultaneous decrease in pressure. In UAVs, this is most commonly applied to the
airflow over wings or propeller blades. Awing’s upper surface is usually curved
(cambered) while the lower surface is flatter. As the air travels faster over the curved
upper surface than the straight lower surface, the pressure above the wing drops below
that underneath, causing an upward lift force.



Lift

Lift is directly generated by the pressure difference caused by Bernoulli’s principle. For
UAVs:

The shape and orientation (angle of attack) of UAV wings or rotors cause air above to
move faster than below, creating lower pressure on top and higher pressure beneath.

As aresult, the net upward force (lift) opposes the UAV’s weight (gravity), enabling flight
and altitude control.

Engineers manipulate wing curvature, angle, and speed to fine-tune lift for specific UAV
applications, such as surveillance or cargo delivery.

IlWlustration:
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Thrust

Thrust in UAVs is managed using Bernoulli’s principle through propeller and rotor blade
design:

Propellers are shaped as rotating airfoils; as the blade moves, the airspeed difference
above and below creates a pressure differential.

Forward thrust is produced by pushing air backwards, with the shape and angle of the

propeller harnessing Bernoulli’s effect to efficiently generate thrust and minimize energy
loss.

Engineers optimize rotational speed and blade geometry to maximize thrust and
minimize drag.



Drag

Drag is a resistive force that opposes thrust. Bernoulli’s equation helps engineers
manage drag by shaping UAV components:

Streamlined airfoils reduce turbulent airflow, ensuring smooth pressure distribution and
less resistance.

Features like winglets or fairings guide airflow, lowering the pressure drag that slows
UAVs down.

Balancing Bernoulli’s effect and minimizing sudden changes in shape help UAVs
maintain efficient flight profiles.

Weight

Weight is the force of gravity acting downward. Bernoulli’s principle doesn’t alter weight
directly, but controlling lift through wing design and angle of attack lets UAVs overcome
weight during various flight maneuvers.

Integrated Controlin UAVs
In UAV flight, all four forces interact:
Lift (via Bernoulli’s principle) must counteract weight for sustained flight.

Thrust (also using Bernoulli’s effect in rotors/propellers) must overcome drag for
forward motion.

Engineers use predictive modeling, wind tunnel testing, and real-time sensors (pitot
tubes, static ports) calibrated based on Bernoulli’s principle to actively manage all
forces and maintain stable, efficient UAV operation.

Schematic Illustration
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Conclusion

Bernoulli’s principle is central to UAV aerodynamics, shaping how engineers design
wings, rotors, and propellers to balance lift, thrust, drag, and weight. By manipulating
airspeed and pressure, UAVs achieve efficient, controlled flight through real-time
adjustment and advanced design.

UAVs generate lift using propellers powered by motors. The flight controller receives
input from a remote operator or follows autonomous software routines. Data from
sensors are constantly processed to adjust motor speeds via ESCs, keeping the UAV
stable and oriented correctly. Navigation can be manual or automatic, guided by GPS
and inertial sensors, enabling the UAV to execute complex missions such as surveying,
mapping, delivery, or inspection.

In essence, UAVs integrate advanced hardware and software that allow for resilient
flight, balanced stability, and autonomous or remote operation, enabling their effective
deployment across diverse applications

What are the key components of Unmanned Aircraft Systems (UAS)?

An Unmanned Aircraft System (UAS) is a comprehensive setup consisting of several
interconnected components that together enable the remote or autonomous operation
of an Unmanned Aerial Vehicle (UAV), supporting its flight, control, data capture, and
mission execution. This integration is vital for safety, reliability, and effective use in
various civilian, commercial, and defense sectors.



Ground Control Station (GCS) Drone

Joystick

Unmanned Aerial Vehicle (UAV):

The flying platform itself, which may be remotely piloted or fly autonomously. UAVs can
be fixed-wing, rotary-wing, or multi-rotor and typically consist of a frame, motors and
propellers (for lift and maneuvering), flight control unit, sensors, payload(s), battery, and
communication modules.

Ground Control Station (GCS):

The human or autonomous command/control center, usually stationed on the ground,
from where operators send flight commands, receive telemetry, and monitor mission
status. It features command interfaces, video screens, communication hardware, and
software for planning and executing flights.

Communication Links (C2/C3 System):

The command-and-control system, often a radio-based data link, maintains real-time
two-way connectivity between the UAV and GCS for flight instructions, telemetry
feedback, video streams, and emergency overrides. These links are essential for safety,
control, and timely data exchange.
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How does an Unmanned Aircraft System (UAS) Work?

System Initialization and Pre-Flight Setup

The UAV is prepared by checking hardware integrity, charging batteries, configuring
payloads (like cameras or sensors), and calibrating sensors and navigation aids. The
Ground Control Station operator programs autonomous flight plans or manual flight
paths into mission software, specifying waypoints, altitudes, speeds, and payload
instructions.

Launch and Control

UAV takeoff is initiated either manually (with a joystick/controller), via computer
interface, or autonomously using preprogrammed protocols.

During flight, commands are relayed from GCS to the UAV over secure communication
links. The flight controller on the UAV processes these commands and manages
onboard sensors to maintain stability, altitude, position, and orientation.

Navigation and Mission Execution

Onboard sensors (GPS, gyroscope, accelerometer, magnetometer, barometer,
cameras) continuously collect data used for navigation, obstacle avoidance, and
mission-specific tasks like surveying or imaging. The UAV adjusts its flight path in real
time, autonomously or through manual commands. Some systems feature high degrees



of autonomy for collision avoidance, return-to-home, or dynamic re-tasking in response
to sensor inputs or operator decisions.

Data Capture, Processing, and Transfer

The UAV’s payload (such as cameras or sensors) collects mission data (images, videos,
measurements), often processed onboard or streamed directly to the Ground Control
Station. Telemetry including position, altitude, battery status, and payload data is
continuously sent back to the GCS for monitoring and decision-making.

Landing and Post-Flight Operations

Autonomous or remote landing protocols are executed, often with additional
safeguards (like real-time monitoring, obstacle sensors, precision landing systems).
Post-flight, the captured data is reviewed, analyzed, and stored, while UAV hardware is
inspected for maintenance and readiness for future missions.

A UAS is distinguished by its seamless integration of airborne, ground-based, and
communication elements—enabling real-time control, precise navigation, robust data
acquisition, and adaptability for various applications ranging from surveillance to
mapping and delivery.



Introduction to Detection, Recognition and Identification

Unmanned Aerial Vehicles (UAVs) or drones have revolutionized surveillance, search
and rescue, environmental monitoring, agriculture, and industrial inspection by
providing rapid data acquisition and scalable coverage of large areas. Equipped with
high-resolution cameras and advanced sensors, UAVs can capture imagery in real time,
enabling automated object and human detection systems for diverse applications such
as security, traffic analysis, disaster response, and precision farming.

DRI: Concepts and Standards

DRI represents three hierarchical levels of capability:

e Detection: The ability of a drone's sensor to discern that something is present at
a given location—confirming an object exists, but not distinguishing its type.

e Recognition: The capacity to determine the broader class of the object (for
example, whether it is a human, vehicle, or animal), though not its precise
identity.

e Identification: The ability to distinguish specific details about the object, such as
recognizing an individual person, vehicle make and model, or discerning a
soldier from a civilian.

These standards are typically quantified using the Johnson Criteria. This model
estimates the minimum number of pixels covering a target at a given distance required
for each DRI level:

e Detection: 2 pixels across the target
e Recognition: 8 pixels across the target
e I|dentification: 12.8 pixels across the target



Industry Standards

The Johnson Criteria assumes that the critical dimension for a human being is 0.75 meters.
To get DRI, you need 1.5 pixels, 6 pixels and 12 pixels across 0.75 meters in the object pane.

Detection
Human
3.6 pixels by 1 pixel
(Something is there)
1.5 pixels / 0.75m = 2 pixels per meter
Vehicle

2.8 pixels by 1 pixel
(Something is there)
1.5 pixels / 0.75m = 2 pixels per meter

4.5 pixels by 1 pixel
(Something is there)
1.5 pixels / 0.75m = 2 pixels per meter

Recognition

13 pixels by 5 pixels
(A person is there)
6 pixels / 0.75m = 8 pixels per meter

13 pixels by 5 pixels
(A vehicle is there)
6 pixels / 0.75m = 8 pixels per meter

- r'.' .

18 pixels by 2 pixels
(Some kind of boat is there)
6 pixels / 0.75m = 8 pixels per meter

Identification

28.8 pixels by 8 pixels
(The person looks like a soldier)
12 pixels / 0.75m = 16 pixels per meter

28.8 pixels by 8 pixels
(The vehicle may be a humvee)
12 pixels / 0.75m = 16 pixels per meter

36 pixels by 4 pixels
(The boat is a small inflatatble boat)
12 pixels / 0.75m = 16 pixels per meter

Detection Identification Recognition

(A fireman is there)

(A person is there)

(Something is there)

UAV Technologies for DRI

Imaging Sensors: Drones use electro-optical (daylight) and thermal cameras for DRI
tasks. Thermal sensors, in particular, allow for detection at night or through smoke, but
often at shorter identification ranges compared to high-resolution daylight cameras.

Artificial Intelligence and Deep Learning: Advanced computer vision and deep learning
algorithms (such as YOLO, SSD, or CNNs) process live video streams and interpret
images for object/person detection and tracking at various distances. Al-powered



systems filter background noise, optimize real-time identification, and enable rapid
decision-making during missions.

Sensor Fusion: Some UAVs combine data from multiple sensors (visual, infrared,
acoustic) to improve detection accuracy, range, and operational performance—
especially in challenging conditions like poor visibility or cluttered environments.

Detection, recognition, and identification ranges vary widely depending on the UAV
platform, sensor type, and environment. For high-performance electro-optical sensor
payloads:

e Detection of a person may be possible at distances up to 1 km to 2 km.

e Recognition typically occurs at roughly half the detection distance.

e |dentification requires even closer proximity, often just a few hundred meters for
small human targets.

Applications of DRI

Surveillance and Security: Drones continuously scan large areas for intruders,
suspicious objects, or vehicles, providing 24/7 monitoring for critical infrastructure and
public events. Al video analytics enable instant alerts and smart incident response.

Search and Rescue: UAVs equipped with thermal cameras and advanced sound
detection algorithms can localize missing persons by their heat signature or auditory
distress signals, even in difficult terrain or after disasters.

Crowd and Perimeter Monitoring: Real-time object/person tracking enables rapid
identification of threats, crowd density, or unauthorized access in public and private
spaces.

Limitations and Challenges of DRI

Environmental Conditions: Weather, lighting, and atmospheric effects can degrade
sensor performance and reduce effective DRI ranges.

Sensor Calibration and Resolution: Higher pixel density and frequent calibration are
critical for optimal identification accuracy.

Computational Resources: Real-time video processing and deep learning require
significant on-board or cloud computing capabilities, presenting challenges for smaller
UAV platforms.

Detection, Recognition, and Identification (DRI) form the backbone of intelligent drone
surveillance and monitoring systems, combining powerful imaging sensors and cutting-
edge Al for precise, actionable data about humans and objects in the environment.



Introduction to Validation and Verification

Verification: Drone Software, Systems and Components meets standards
Validation: The Drone is fulfilling all its tasks and meeting the requirements

The exhibit below summarizes the key aspects of Verification and Validation, for Drones

and UAS.

VERIFICATION

K *Verification* confirms\

the drone adheres to its
design specifications
and standards.

* Essentially, verification
answers "Are we building
the drone right?".

*  \Verification is often
performed during
development and

K manufacturing /

VALIDATION

~

*  *Validation* ensures the
drone meets user needs
and requirements

*  Validation answers "Are
we building the right
drone?"

* Validation is often
performed before and
after deployment.

4 A
KConformance to design: \ KMeeting user needs: \
Ensuring the drone's Ensuring the drone
Areas components, software, and effectively fulfills the tasks
overall system meet the and requirements of its
of predefined design intended users.
Focus specifications. * Real-world applicability:
* Compliance with Assessing if the drone
standards: Confirming the performs reliably in the
drone adheres to relevant operational environment it
industry and regulatory is designed for.
standards. * User satisfaction:
* Internal consistency: Gathering feedback from
Verifying that different parts users to understand their
of the drone work together experience with the drone
as intended and that there and identify areas for
are no inconsistencies in improvement.
&he design. / k /
f A
KStatic tests: Checking the\ A:light tests: Evaluating the\
Tests functionality of individual drone's stabi.li'ty,
components like motors, maneuverability, and
Unde sensors, and performance in different
communication systems. conditions.
r- » Software verification: * Payload validation: Testing
ta ken Testing the drone's software the drone's ability to carry
for bugs, performance and deploy payloads for its
issues, and adherence to intended purpose.

coding standards.

* Structural integrity tests:
Ensuring the drone's frame
can withstand expected
stresses and strains.

. )

o /

* Navigation and control
validation: Assessing the
drone's ability to follow pre-
programmed routes, avoid
obstacles, and respond to
user inputs.

* Environmental testing:
Validating the drone's
performance in various
weather conditions,
temperature ranges, and

vltitudes.




Please find below a workflow summarizing activities from Customer Research to
Customer Acceptance.

Customer Acceptance
Testing

Systems Testing,
Quality Assurance

Manufacturing,
In line with Process
Document (PD)

Supply Chain,
Incoming Quality Control

Prototype Validation,
Process Document (Supply
Chain, Mfg, Quality Control)

Customer Requirement/ RfP
Market Research Document
(MRD)

Market Development and Customer Requirement

Business Development articulates to a problem statement (in discussion with
Customer) or responds to a Request for Proposal (RFP) from Customer, capture List of
parameters

- Endurance (flight time)

- Environmental conditions for operation
- Technical Requirements

- GPS/Camera Need

This requirement/ RfP goes from the Business Development team to the Product
Manager. The Product Manager talks to the Systems Engineer, who identifies the
Components suited to the Requirement/ RfP.

Market Research Document (Gathering what market needs)

- Establishes what is customer need

- Captures what s available in the market document

- Compares what Asteria offers and what competition provides
- Identifies something that is innovative for Asteria

- Helps the customer realize the innovative need met



The team then holds a DEMO and showcases the capabilities of the Drone solution. The
bid is submitted.

Prototype Development and Process Definition

Once bid is awarded, Systems Engineer and R&D will build and test prototype, until
Requirements are met. Product Manager and Systems Engineer will record Prototype
parameters, that has passed testing criteria. This will be taken forward into
Manufacturing stage.

Product Requirement Document (PRD)

- Identifies how earlier customer needs/ opportunities were missed (if any)
- Establishes how the customer need is met (with current MRD as input)

A Process Document (PD, step-by-step instruction guide for manufacturing) is
prepared. During the preparation of the PD, Product Planning and Control (PPC)
delegates manhours and fits process to the timeline.

Technical Requirement Document (TRD)

- Establishes what technical specifications are required to achieve what is asked
forin the PRD

Supply Chain and Incoming Quality Control

PPC works with Supply Chain Management (SCM) to identify components & vendor
sources and obtain order commitments for deliveries within PPC deadlines. Once
components ordered are delivered in line with purchase orders place, Incoming Quality
Control (IQC) tests every incoming component in line with standards and validation
criteria.

Manufacturing

After clearance by IQC, components are taken into Stores for manufacturing. Before
start of Manufacturing, the Process Document (PD) and Components/ Material all
allocation to the Product Manufacturing Team (PMT). The PMT assembles the product
stage-by-stage in line with the PD. Stage-wise inspections are conducted by Quality
Control (QC).

Systems Testing and Quality Assurance

There are two inspections conducted for each system - Static (at desk) and Dynamic (at
field). The product - after quality testing — goes to Quality Assurance (QA) for
Verification. After Verification (ie Systems Testing) — the product goes to the Finished



Product Warehouse. Here, Pre-Delivery Inspection (PDI) and Joint Receipt Inspection
(JRI) is undertaken by Customer Support and Quality teams. The Drone is delivered to
the Customer after all inspection is completed and cleared.

Customer Acceptance

The Acceptance Test Procedure (ATP) team from Asteria trains the Customer for 2-3
days. The Customer undertakes two-step Acceptance Test Procedure (ATP) — one at
premises (in-house) and second at site (field). After Customer completes ATP, Payment
to Asteria is released. Asteria Customer Support then takes over to address any queries,
provide engineering support and coordinate to undertake service maintenance and
repairs. In doing so, the Asteria Engineering team analyses telemetry data and flight
parameters. The Asteria Service team fixes mechanical problems (if any).

All points of validation match the TRD with the PRD.

Real-time computer vision on UAV platforms is essential for quick responses in dynamic
environments, enabling applications such as live threat detection, immediate search
and rescue, automated traffic management, and environmental monitoring. Validation
and verification metrics are vital to ensure accuracy, reliability, and robustness of these
automated systems under challenging conditions like motion blur, variable lighting, and
small object sizes.



Using Artificial Intelligence and Machine Learning to
improve the Accuracy of DRI

Measuring the Effectiveness of Object DRI by Drones

Key metrics for evaluating object detection models are Intersection over Union (loU),
Precision, Recall, and Mean Average Precision (mAP).

Intersection over Union (loU) is A measure of overlap between the predicted bounding
box and the actual (ground truth) bounding box. It's the ratio of the area of intersection
between the two boxes to the area of their union. A perfect detection has an loU of 1,
while no overlap yields an loU of 0. A threshold (e.g., 0.5) is set to determine if a
prediction is a true positive.

Precision Measures the accuracy of the detector's positive predictions. It's calculated
as True Positives / (True Positives + False Positives).

Recall Measures how effectively the detector finds all the actual positive objects. It's
calculated as True Positives / (True Positives + False Negatives).

Average Precision (AP), For each class, is the area under the precision-recall curve,
which plots precision against recall at various confidence thresholds.

Mean Average Precision (mAP) is A single metric that summarizes the performance of
an object detection model across all object classes.

A higher mAP indicates better overall performance, meaning the model is both accurate
in its detections (high precision) and has successfully found most of the objects (high
recall).

F1 Score provides balanced assessment considering both precision and recall:
F1=2x(PrecisionxRecall)/(Precision+Recall). This metric proves particularly valuable for
drone applications where both missed detections and false alarms carry significant
consequences.

These metrics hold significance, owing to three considerations:
Localization: loU assesses how well the model localizes objects.

Classification: Precision, recall, and the precision-recall curve evaluate the model's
ability to correctly classify objects and distinguish them from backgrounds or other
classes.

Comprehensive Evaluation: mAP provides a holistic view of the model's performance
by averaging the results across different object classes and considering the trade-off
between precision and recall



State-of-the-art computer vision frameworks—YOLO (You Only Look Once) and
OpenCV—enable accurate, robust, and real-time analysis of aerial imagery.

Introduction to YOLO

YOLO (You Only Look Once) is a highly popular real-time object detection algorithm that
analyzes an entire image in a single pass by dividing it into a grid and predicting
bounding boxes and class probabilities for each grid cell. This grid-based approach with
anchor boxes allows YOLO to efficiently detect multiple objects of various sizes and
classes within one frame, making it well-suited for fast applications like UAVs (drones).
YOLO trades some localization accuracy for significantly faster inference speeds
compared to traditional region proposal methods, enabling real-time detection.

In UAV applications, YOLO is extensively used for object detection, recognition, and
identification due to its speed and generalization. However, detecting small objects
from UAV imagery remains challenging because of small object sizes and complex
backgrounds typical in aerial views. To address this, many enhanced versions of YOLO
have been developed for UAV-specific tasks, such as SOD-YOLO and GL-YOMO, which
improve small object detection by adding attentional mechanisms, multi-scale feature
fusion, and motion analysis. For example, GL-YOMO combines YOLO detection with
multi-frame motion detection for higher accuracy in long-distance UAV detection
scenarios.

Recent UAV-specific YOLO models also incorporate improvements like small object
detection layers, Soft-NMS to refine confidence, lightweight modules for faster edge
computing, and GhostHead networks to boost both accuracy and inference speed.
These adaptations help YOLO overcome challenges unique to UAV imagery such as
small target size, occlusions, and varying lighting, leading to better precision, recall, and
mean Average Precision (mAP) scores compared to baseline YOLO models.

Introduction to OpenCV

OpenCV is a widely used open-source library for computer vision and image processing,
and it plays a crucial role in enabling object detection, recognition, and identification for
UAV (Unmanned Aerial Vehicle) applications. It offers both traditional image processing
techniques as well as interfaces for integrating modern deep learning object
detectors—making it highly suitable for real-time UAV deployments.

OpenCV (Open Source Computer Vision Library) provides a comprehensive toolkit for
image and video manipulation, including algorithms for feature extraction, object
detection, image recognition, and image segmentation. It supports multiple languages



(C++, Python, etc.) and is optimized for efficiency, which is critical for deployment on
resource-constrained UAV platforms.

Object Detection with OpenCV

OpenCV enables object detection through both classic methods (such as Haar
Cascades, HOG with SVM) and deep learning approaches (such as YOLO, SSD, and
others).

Haar Cascades work by classifying regions in grayscale images using pre-trained
classifiers—best for faces and simpler tasks.

HOG (Histogram of Oriented Gradients) combined with linear SVM is well-suited for
pedestrian detection and uses edge-based features.

For more robust and modern requirements, OpenCV interfaces seamlessly with deep
learning models, e.g., YOLO, which detect and classify multiple objects in real time—
making it ideal for UAV use where speed and accuracy are needed.

UAV Use Cases: Detection, Recognition, and Identification
On UAVs, OpenCV is used in several core functions:

Object Detection: Identifies and localizes objects in aerial frames or video streams—
these might be drones, vehicles, people, or wildlife. Techniques include contour
detection, background subtraction for moving objects, and bounding-box generation.

Recognition: Once potential objects are detected, recognition leverages either classic
image descriptors or deep neural networks to classify and label those objects. Models
can be pre-trained on public datasets or custom-trained for UAV-specific tasks (search
and rescue, surveillance, monitoring).

Identification: This involves verifying, tracking, or more narrowly identifying objects
(such as distinguishing different vehicles or species). OpenCV aids in generating unique
signatures or connecting with more advanced algorithms for target identification



Application of YOLO and OpenCV in Object DRI
System Architecture
The typical pipeline for drone-based detection systems consists of:

e Data Acquisition (UAV captures high-resolution aerial images/video)

e Preprocessing (noise reduction, frame extraction, enhancement)

¢ Detection (YOLO model for bounding box prediction)

e Recognition & Identification (class probability, object labeling)

¢ Validation & Post-processing (OpenCV cropping, confidence filtering, tracking)
Each stage plays avital role in the UAV’s autonomous perception and decision-making.
Data Acquisition and Preprocessing

o Data Acquisition: UAVs are equipped with RGB or multispectral cameras
delivering image streams at high altitudes or wide angles.

e Preprocessing: OpenCV routines such as Gaussian blur (noise reduction), frame
extraction from videos, resizing, and normalization are applied to enhance data
quality and reduce computational overhead.

¢ Background Removal: Advanced image segmentation (quick-shift or
thresholding) may be used to isolate foreground objects/humans prior to
detection.

Detection using YOLO
e YOLO Algorithm:

e YOLOvV8/v9 models process images in a single computational pass,
outputting bounding boxes, confidence scores, and class probabilities for
objects (e.g., human, vehicle).

e The architecture predicts, for each grid cell, the bounding box coordinates
(x,y,w,hx,y,w,h), objectness score P(object)P(object), and class
probabilities ([P(class1),P(class2),...][P(class1),P(class?2),...]).

e Non-Max Suppression (NMS): Filters overlapping boxes to ensure
detection uniqueness.

e YOLO in Aerial Settings:

¢ Models are fine-tuned for aerial image datasets to address altitude, angle,
and scale variance.



e Specific class weights are adjusted to prioritize 'human' or 'vehicle'
detection, improving precision for target objects.

Recognition and Identification

e Recognition: Highest class probability from YOLO’s output is assigned for each
valid bounding box (e.g., person, vehicle).

¢ Identification:
o Extracted detection coordinates enable region cropping via OpenCV.

e Additional feature extraction—such as angle computation between
detected joints, distance between landmarks, or 3D shape estimation—is
implemented for human action classification or object type confirmation.

e Deep learning classifiers (CNN, Kernel Discriminant Analysis) can be
stacked for refined recognition and individual identification.

Validation and Post-Processing
¢ OpenCV-Based Validation:

e Cropping: Detected bounding boxes are indexed and cropped using
OpenCYV for focused analysis or validation.

o Confidence Filtering: Only detections above a set confidence threshold
are retained for validation.

e Rule-Based Tracking: Multi-frame tracking with cross-correlation
improves detection persistence and reduces drops due to occlusion or
confidence fluctuation.

¢ Bounding boxes are preserved from prior frames and re-evaluated
against new detections using intersection-over-union (IOU).

¢ Confidence scores are dynamically updated for persistent
tracking, enabling prediction during missed detections.

e Performance Metrics:

o Validation workflows calculate precision, recall, F1-score by matching
detected bounding boxes with ground truth annotations.

e Latency, frame rate (e.g., 15-30 fps), and computational throughput
metrics are reported, ensuring UAV deployments meet real-time
operational requirements.



YOLO Integration with OpenCV

Modern drone-based detection systems leverage the synergy between YOLO's real-time
detection capabilities and OpenCV's computer vision processing power. The YOLO-8
model achieves remarkable performance with 91% accuracy in person detection from
drone imagery, processing 900x900 pixel resolution images with runtime speeds of
238.41 milliseconds. This integration utilizes OpenCV's image slicing functionality to
extract bounding box coordinates and crop specific regions of drone images, enabling
precise isolation of detected persons or vehicles.

The validation pipeline incorporates YOLOvV8's single-stage architecture with Cross-
Stage Partial Networks (CSP) and Path Aggregation Network (PANet) components,
optimized for UAV systems operating in dynamic environments. OpenCV handles the
preprocessing and post-processing stages, including confidence value filtering and
Non-Maximum Suppression (NMS) to eliminate duplicate detections.

Enhanced Models for Indoor Detection

Specialized models like YOLO-IHD demonstrate superior performance in complex
indoor environments, achieving 77.71% mAP®@0.5 with 78.83% precision and 71.60%
recall for human detection. The modelincorporates optimized convolutional layers and
attention mechanisms specifically designed to process complex visual data from
indoor UAV operations, making it highly reliable for disaster response and indoor rescue
missions.

Real-Time Processing Hardware Platforms

Nvidia Jetson (Nano, Xavier NX): Highly popular for drone applications due to onboard
GPU acceleration, these devices process YOLOv5, YOLOv8 Nano, and custom
lightweight models at frame rates (FPS) suitable for real-time tasks (often 15-30+ FPS
with Nano and 35+ FPS with Xavier NX).

Raspberry Pi 4: Capable of running optimized YOLO models with reasonable real-time
performance by using reduced input image size and lightweight YOLO variants for live
drone video streams.

Intel Movidius/FPGA/VPU: For ultra-lightweight inference, OpenVINO allows model
acceleration on Intel platforms, which is useful for specialized security or autonomous
navigation drones.



Workflow for YOLO and OpenCV in UAV-based Object DRI

Please find below an illustrative workflow for integrating YOLO and OpenCV toolsets
towards UAV-based validation of objects

1. Data Collection and Preparation
O Collect diverse aerial imagery and video data from drones/UAVs under varying
conditions.
O Annotate objects and humans in the frames with bounding boxes and class labels.
o Splitthe data into training, validation, and test sets (e.g., 70%/20%/10%).

2. Model Training with YOLO

o Train a YOLO model (e.g., YOLOV8) on the training dataset.

o Use data augmentation to enhance model robustness (e.g., scaling, rotation,

illumination changes).
O Save model checkpoints for validation testing.

3. Inference and Prediction Extraction

O Use YOLO for real-time object/human detection on the validation dataset.
o Extract bounding boxes, confidence scores, and class predictions.
o Apply Non-Maximum Suppression (NMS) to remove duplicate detections.

4. Preprocessing with OpenCV

o0 Use OpenCV to preprocess images as needed (resize, color conversion).
o Crop detected bounding box regions for detailed analysis or recognition tasks.
O Generate image slices for multi-scale evaluation if necessary.
5. Validation Metric Calculation
o Calculate Intersection over Union (loU) between predicted and ground-truth bounding
boxes using OpenCV functions.
o Compute validation metrics:
= Precision, Recall
®  Mean Average Precision (mAP)

= F1 Score



=  Confusion Matrix per class
O Visualize Precision-Recall curves and F1 score trends.

6. Threshold Optimization

o Evaluate model performance at multiple confidence and loU thresholds.
o Select optimal thresholds balancing false positives and false negatives.

7. Performance Analysis

O Analyze class-wise metric distributions to identify strengths and weaknesses.
o Perform error analysis: False positives, false negatives, and localization errors.

O Use OpenCV to visualize detections on images with bounding boxes, labels, and

confidence scores.

8. Batch Validation and Reporting

o Automate batch processing of the entire validation dataset using OpenCV and YOLO.

O Generate comprehensive validation reports with quantitative metrics and qualitative

visual results.
O Save intermediate results for iterative model tuning.

9. Real-Time Validation (Optional)

o Deploy the YOLO model on an embedded system.
O Use OpenCV video capture to validate real-time inference performance (FPS, latency).
O Monitor detection accuracy live on drone video feeds.

10. Continuous Validation

O Integrate a pipeline to periodically validate new data.

o Update model and thresholds if performance degrades.

This workflow ensures a systematic, rigorous, and scalable validation process for drone

vision systems using YOLO and OpenCYV integration.



Assessment and Conclusion

YOLO and OpenCV together improve the effectiveness of detecting, recognizing, and

imaging humans versus objects by drones and UAVs in several key ways:

1. Real-Time High-Accuracy Detection by YOLO

YOLO models, especially versions like YOLOvVS, are designed for fast, real-time
detection with high accuracy. YOLO's single-pass detection architecture enables
precise localization and classification of objects and humans simultaneously in drone
images or video frames. For human detection, YOLOv8 achieves up to 91% accuracy in
drone imagery, outperforming other models like Faster R-CNN or YOLOvV5 in both
precision and speed. This is crucial for drones operating at varying altitudes and speeds

where quick and robust human detection is needed.

2. Effective Differentiation Between Humans and Objects

YOLO models provide strong discrimination capabilities between humans and other
objects due to their deep convolutional layers trained on large and diverse aerial
datasets. For drones, which capture images from high altitudes and varying angles,
YOLO adapts well to detecting scaled and partially occluded humans, maintaining
higher mean average precision (mAP) for people compared to many objects. OpenCV
assists by preprocessing images (e.g., resizing, noise reduction) and postprocessing

YOLO outputs (like applying Non-Maximum Suppression) to refine detections.

3. Enhanced Image Processing and Feature Extraction by OpenCV

OpenCV complements YOLO by handling image enhancement, noise filtering, and
region cropping, crucial for improving recognition accuracy post-detection. It allows
drones to isolate detected humans and objects for further recognition or tracking,
applying computer vision algorithms like background subtraction, segmentation, and

feature extraction, which are vital in complex aerial scenes.

4. Robustness Across Environmental Conditions



Together, YOLO and OpenCV help drones maintain effective detection under
challenging conditions such as varying altitudes, speeds, lighting, and backgrounds.
Studies show that drone altitude and object size affect detection performance; YOLO’s
architecture combined with OpenCV’s image processing improves robustness to these
variables, making human detection consistently reliable compared to other object

classes which might have more variability in shape or texture.

5. Superior Speed-Accuracy Trade-Off

YOLO models excel in runtime efficiency allowing drones to perform human and object
detection with low latency, critical for real-time applications like surveillance, search
and rescue, and monitoring. OpenCV'’s optimized functions support this by efficiently
managing image input/output and data manipulation. Compared to more complex,
slower models like Faster R-CNN, YOLO integrated with OpenCV provides a practical

balance suitable for embedded drone systems.

6. Specialized Deep Learning and Feature Extraction for Human Recognition

In addition to detection, advances integrate YOLO with deep-learning-based human
feature extraction pipelines using OpenCV, such as extracting pose landmarks or 3D
point clouds for detailed human recognition and action classification in aerial videos.
This is less common for general object detection, marking a critical enhancement for

human-focused UAV applications.



Summary Table

Model/Platform

YOLOv8 Nano

LEAF-YOLO

YOLO11-S
Optimized

Raspberry Pi 4

Jetson
Nano/Xavier

OpenVINO (Intel)

FPS
(typical)

35+

(Xavier),

15+

(Nano)

30+

30+

8-20

15-35+

10-30

Edge
Suitability

Excellent

Excellent

Very Good

Good

Excellent

Good

Optimization
Methods

Pruning,
Quantization

Lightweight
modules

Reduced
width/depth

Input size
reduction

Hardware
acceleration

INT8
quantization

Application

Real-time visual
navigation,
inspection,
surveillance

Small object UAV
search and rescue

Maritime rescue,
fast UAV detection
in dense scenes

Budget surveillance,
basic tracking

Mapping, SAR
missions, traffic
monitoring

Security,
autonomous
navigation in
restricted
environments

Together, YOLO and OpenCV significantly enhance drones' effectiveness in detecting,

recognizing, and imaging humans as compared to other objects, enabling high

precision, real-time functionality crucial for many aerial applications.
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